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Abstract

More general and stronger estimations of bounds for the fundamental functions of Hermite
interpolation of high order on an arbitrary system of nodes on infinite intervals are given.
Based on this result, convergence of Gaussian quadrature formulas for Riemann—Stieltjes
integrable functions on an arbitrary system of nodes on infinite intervals is discussed.
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1. Introduction

Let neN (n=2), mp,eN (k=1,2,....,n, n=2,3,...), and

X o= { X1 X2y oeey Xon J, — 00 <X <Xy g < -+ <X1p < + 00. (1.1)

Throughout this paper let N, = ZZZI My, — 1 and m = sup,,5, Max|<r<p Min < +
o0. In what follows, my,, Xip, ..., will be denoted by my, xi, ..., respectively. We
assume that do is a measure function on R with all moments of do being finite.
Denote by Py, the set of polynomials of degree at most N, and by Aj the
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fundamental polynomials for Hermite interpolation, i.e., Ay € Py, satisfy
AP (xg) = gy p=0.1,.comg—1, j=0,1, .. ,m—1,
q.k=1,2..,n. (1.2)

To give an explicit formula for Ay set

L) = ]I (X_x‘f> Ck=12,..n,

=gk Nk T X
1 ,

bvk:g[Lk(x)‘l]i.‘:)xk, v=0,1,....me—1, k=12,..n, (1.3)
m;\»fjfl

Bi(x)= > bulx—xx)', j=0,1,..om—1, k=12 ..n (1.4)

v=0
Then we have [3]

1 .
Ajk(x):j—'(x—xk)]Bjk(x)Lk(x), j=0,1,....om—1, k=12 .. n (15)

In this paper, we need the following notations:

g = |x1 — x2|, for my>1,
b |x; — x3], for my =1,

|xn71 - xn‘» for my_1> 17
dy =
|xn72 - xn‘v for my,_| = 11
di = max{|xg_1 — xx|, |xx — xXp1]}, 2<k<<n—1,

D,= max dy, n=1,2,...,
I<k<n

on(x) = sgn H (x — xp)"™,

k=1

+o0
)Lj/m:/ Aj(x)o,(x) do(x), j=0,1,....m—1, k=12, ..,n  (1.6)

0

Odoif ) =S oeldo) f(xialdo)), n=23, ... feS(da). (1)
k=1

Here S(do) stands for the set of all Riemann—Stieltjes integrable functions on R. For
convenience of use, now we give three definitions.

Definition 1.1 (Freud [1, p. 62]). doue& means that if a measure dff satisfies

/Rx”dﬁ(x):/x”doc(x), n=0,1,...,

R
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then
B(x) = (= o0) = alx) — a(—c0),
apart from denumerably many points of discontinuity.
Definition 1.2 (Freud [1, p. 69]). f € So(do) means that f'e S(do) and there exist three
positive numbers s, A, B such that

If (x)| <A+ B|x|, xeR.

Definition 1.3 (Freud [1, p. 88]). Let
— 00 <Xy <Xp_i < <Xpp< 400, n=12 ..

and
W =0, k=12,...,n, n=12,.... (1.8)

Let

n

(/) = ] (Xtn)-

k=1

A positive quadrature procedure {Q,} is said to belong to the measure do if the
relation

Jim 0,(1) = [ fx)dal) (1.9)
R
holds for every polynomial f.

Theorem 2.1 in [3] gives a good estimation of bounds for the fundamental
functions of Hermite interpolation of higher order on an arbitrary system of nodes
on the interval [—1, 1] (see Theorem A below), but it holds only on finite interval. The
first aim of this paper is to improve the result of [3, Theorem 2.1] and to extend it to
infinite intervals in Section 2 using many ideas of [3]. As applications of this result,
the second aim of this paper is to give conditions for convergence of Gaussian
quadrature formulas Q,(do;f ) for feS(do) under the assumption that all my,
1<k<n, neN, are even, which improves the result of [1, Theorem 1.6, p.93] (see
Theorem C below) on an arbitrary system of nodes on infinite intervals in Section 3.
Of course, in this case g, = 1, a.e.

2. A basic theorem

First we state a known result.
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Theorem A (Shi [3, Theorem 2.1]). If for a fixed n, my —j is odd and j<i<my,
1<k<n, then with c =1,

.
()| =eode | A(x)], xel, 1<k<n,
J:

where

l=xo=2x1>x>>x, =X = —1,
die = max{|xx — xk_1], vk —xn1]}, k=1,2,...,n

and

R Jor 2<k<n—1,
I=1¢ (—o0,1] fork=1,
[1,40) for k=n.

Before stating the main result, we give an important lemma.

Lemma 2.1. If m — i is even then

B;i(x)<0, x>x;+d. (2.1)

Proof. Using [3, (2.32)] with k = 1 and r = 2 as well as [3, (2.25)], we obtain

(—1)‘71
(—l)vbvl = dl b\’*l,l >0, V= 1,2, e, myp — 1. (22)

From (1.4) for k = 1, we have

my—i—1

Ba(x)= > balx—x)'

v=0
m];i—Z
= [bg\,+171(x — xl) —+ bzm}(x — X1)2v. (23)
v=0
Since x — x; >d, by (2.2)
bovi1,1(x — x1) + bay1 <bayy11dr + by 1 <O. (2.4)

Inequality (2.1) follows directly from (2.3) and (2.4).

The following result improves Theorem A and plays a crucial role in this paper.
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Theorem 2.1. If for a fixed n, my. — j is odd and j<i<my, 1 <k<n, then

Bi(x)|, xeR, 1<k<n. (2.5)

1l ..
|Ajk(x)|Zﬁd,'!_'\Aik(X)L xeR, lI<k<n. (2.6)

Proof. For 2<k<n — 1, according to Theorem A, inequality (2.5) is obvious.
For k = 1, we separate two cases.
Case 1: x<x| +d,.
Let
a=x,—d, b=x+d.

Using the following linear transformation from the interval [a, b] to the interval
[_17 1]

2 a+b
r_ _ 2.7
YT —d b= (2.7)
one can get
2 a+b
4127 ;— .: 1 cee 1
xl b_axl b—a, l 07 ) 7n7n+ b
where xo = x; + di, Xpy1 = X — dy.
Hence,

-1 = xn+1'<xn’<xn,1’< <X2,<X1/<X0/ =1.
Let

n / my
X=X
! _ || q
L1 ()C)— . s
X1 — Xyq

q=2

1 v
by = W[Ll/(x)-lr b v=0,1,..,m — 1,

x=x"?

mi—j—1

Bji'(x) = Z bu'(x —x1")",

v=0

d = \xl’ —)Cz/| for I’Vl2>l,
: \xl’ —X3,| for my = 1,

gl = |xu—1" — x| for my_1>1,
" |xy—2" — x| for m,_; =1,

di’ = max{|x;" — x)'|, |x1" —x/[},

d/ = de, 2<k<n-—1.



C. Zhou | Journal of Approximation Theory 123 (2003) 280-294 285

Then
n _ mq
Li(x) = (x xq)
=2 xlfxq
) bz;a(xllfxl)
2 a+b
:Ll —
1<b—ax b—a)
and

(v 2\’ _
[Li(x) l}iz)m = <b—a) Ly (x) l]ile]” v=0,1,...,m — 1,

from which by (1.3) for k = 1 it follows that

bu =L ()71,
1/ 2\ 10
:ﬁ<b - a) 1) l]i:)xl/
2\,
= m b‘;l, V:071,...,I’I/I1—1. (28)
Applying (1.4), (2.7) and (2.8)
my—j—1 '
Bi(x) = Z by (x —xp)"

Il
3
|
()
S
=
l_\|
N
S
| | N
Q
|
S
I+
ol
N~
I
=
=

0
=B/ (Lx _ ﬂ) _ (2.9)

If x<b then ;2 x — “2< 1, according to Theorem A for k = 1, by (2.9) we obtain

b—a

(2 akb\ | (2 ath g (2 ekt
By <b—ax_b—a (') b—a" b-a) Bu b—a" b-a
2 a+b
By’ — .
8 (b—ax b—a)

bh—a—\"'" o
( 3 d]/) |X—X]| 7

i

\%
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However,

b—a— b—
3 adll zTamaxﬂxl’ — X2l|, |X1/ — XO/|}

=max{|x; — x|, [x1 — xo|}
=max{|x; — xa|, di}

=d,.

Hence,

2 b - .
Bﬂ’(b—x—ia) >d{ ™ |x — x|

—a b_

2 a+b
B (b—ax b—a)" (2.10)

Obviously from (2.9) and (2.10) it follows that

i—j
X — X1
|Bi(x)|, x<b,

Bji(x) ?d{7i|x — X1 |i_j|Bi1 ()| = d,

i.e.

[Bi(x)], x<xi+d. (2.11)

Case 2: x>x1 + d;.

In this case, we separate three subcases.

Case 2.1:i=j+ 1.

Shi [3], proved that if m; —j — 1 is even, Bj;;(x) has exactly one zero, say ¢,
which must lie in (x;,+0c0) and we have

Bi(x)> -~ LB 1(x), xeR, (2.12)
X1 — X2
X —X
Bji(x)>>—"1Bj.(x), x>¢, (2.13)
X1 — X2
Bj+1’1(x)>0, x<é. (2.14)

Using (2.12)—(2.14) as well as Lemma 2.1

X=X X=X
Bji(x)> ‘
X

di

|Bj1,1(x)| =

|Bj+1,1(x)|, x>x| +d. (215)

1
—x
Case 2.2:i=j+2.
Following the idea of [3], put

Li(x) :Ll(x)(x_x2>l.

X1 — X2
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Thus,
* 1 * -1
by = L)L,
1
=by + by_11, v=1,
X1 — X2
from which by (1.4) for k£ =1 it is not difficult to see
my—j—2
B;Jrl,l(x) = Z by (x —xp)’
v=0
X — X1
= j+1‘,1(x) + N x Bj+2_1(x). (2.16)

Since m; —j — 1 is even, according to Lemma 2.1
Bj+171(x)<0, x>x; +d, (2.17)
Bi1(x)<0, x>x;+d. (2.18)
Then by (2.16) and (2.18)

« X — X1
0>B;.11(x) = Bjr1(x) + -

. Bj.,.;](X), x>x; +d. (2.19)
— A2

Applying [3, (2.24)] with m; — j — 2 being odd
B,'+2’1 (x) >0, xeR. (2.20)
Using (2.17) (2.19) and (2.20)

X — X1
Bji11(x) < e

Bj+211(x)<0, x>x| +d.

Thus,
X—x X—x
By ()] > B ()= | [Buaa(x)], x>xi+di (221)
X1 — X2 di
Put (2.21) into (2.15), we see
X —X] 2
Bji(x)> — 1Bii21(x)],  x>x1 +d. (2.22)
Case 2.3: From the above induction, one can easily prove
3
X—x
Bji(x) = a HBisi ()], x>xi+di,
X —Xi 4
le(x)> d, |Bj+4,1(x)|7 X>X +d17
X — X =
Bj] (x) = 7 |B,‘1 (X)|7 x>x; +d. (2.23)




288 C. Zhou | Journal of Approximation Theory 123 (2003) 280-294

Using (2.11) and (2.23), inequality (2.5) is obvious for k = 1. Similarly we can prove
(2.5) for k = n. By the same argument as that of [3, (2.22)], we obtain (2.6).

3. Convergence of Gaussian quadrature formulas
First we state two theorems in [1].

Theorem B (Freud [1, Theorem 1.1, p.89]). Let due& and f'€ S(da). Then for every
positive quadrature procedure {Q,}, belonging to the measure do, the relation

Jim 0,(f) = [ f(x)dat)
holds.

Theorem C (Freud [1, Theorem 1.6, p. 98]). Let daeé, feS(da) and let G(x) be a
non-negative function, defined in R, for which all derivatives exist in R and suppose that

G?(x)=0, xeR, v=12, ..,

S )
YETw G(X) o ’CHIEICX) m =0

and [y G(x) do(x) exists; Moreover, as is customary, let X, = Xp,(dor)(k = 1,2, ...,n)
be the zeros of P,(do;f ) of orthogonal polynomials; then

llm On(dosf) /f ) dou(x

where

n

Qn(doﬁf) = Z In(dot; Xicn) [ (Xien (o))

k=1

with
It xe) = / Jon(x) do(x)
R

and Iy, (x) being the Lagrange fundamental interpolation polynomials over the points
Xlns X2ny vy Xun. Let Xpn(dot) be the solution of the extremal problem

my _ _ mj
/RH|x xi|™ do(x —rr_11n>t”/RH|x tie|™ do(x).

H=

Based on the result of Theorem A, by the similar arguments to that of [4, Lemma
2] and [4, Corollary 1], we get the following two lemmas.
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Lemma 3.1. If my —j is even and 0<j<i<my — 2, then
Lk (dor)| < 0 (xx (dor) + 0)dy 7 A (do),  1<k<n. (3.1)
Lemma 3.2. Assume that all my., 1<k<n, neN, are even then

) o fXk-1(dw)
|ijk(doc)|<d,'(’)bo/((doc)<dj(// do(x), 0<j<my—2, 1<k<n  (32)
)Ck+](d06>

Lemma 3.3. Let all my be even and do be a measure. Assume that G is (N, + 1)th
continuously differentiable on R and satisfies

G(x)=0, GWD(x)=0, xeR. (3.3)
Then,

n mk72

ST eldo) GO (o)) < / G(x) dau(x). (3.4)

k=1 j=0 R

Proof. Let ¢>0 be arbitrary and we consider the function G,(x) = G(x) + ex"o*!
and the Hermite interpolation polynomial H,,(x) of degree at most equal to N, of
G.(x), which is, on account of [1, Lemma 1.3, p.15] uniquely determined by the
relations

HO(x) =G (xp), j=0,1,...,m—1, k=12 ...,n (3.5)

We show that H,,,(x) < G,(x) holds for every x. If this were not the case for every x,
that is to say, there exists a point y satisfying H,,(y)>G.(y); In view of
G,(x)=exV*! we can get H,,(x)<G,(x) hold for sufficiently large values of x;
then the difference G,(x) — Hyn(x) would have at least one zero with odd
multiplicity. Thus G, — H,,,, would have, the prescribed zeros included, at least NV, +
2 zeros, counted with their multiplicities. By repeated application of Role’s theorem

one would find a point xy where GEN"H) —H,SZ”H) vanishes. This is, however,

impossible, on account of Hi' ™ (x)=0 and GV (xy) = GM+V(xy) + (N, +
1)le>0. This contradiction proves our statement. On the basis of (3.5) and by [5,
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Theorem 2.1], we infer that

n mp—=2 n m=2
3> dilda) G (xi(do)) = > (o) H) (xi(do))
k=1 =0 =1 =0
_ / () Ho () ()
R
_ / Hi(x) dot(x)
R
<A@@wm

= /RG(x) doc(x)+/8xN"+1 do(x).

R

Hence the statement of the lemma follows by the limiting process ¢— 0.

Theorem 3.1. Let doeé&, feS(du), and let all my,, 1<k<n, neN, be even. Assume
that G has all derivatives on R and satisfies that

G¥(x)=0, xeR, j=01,..., (3.6)
G (x)|<cG(x), xeR, j=12,..,m-2, (3.7)
, f(X):07 (3.8)
x> G(x)

and [ G(x) do(x) exists. If

lim D, =0 (3.9)
then

ﬂg;MWWMWDQJ% (3.10)
and

Jim (@) = [ 1) dnto). (3.11)

Proof. We denote Ny = {1,3, ...,m; — 3}, N, = {2,4, ...my — 2}.
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From Lemma 3.2 and (3.7)

n

Z Z Aix(dor) G ) (xp(da))|< ¢ Z dk]AOk (do) G(xp(do))

k=1 jeN, k=1 jeN
<c Z D) Jox (der) G(xy (dr))
k=1 jeN;
=c > do(da)G(xi(dw) > D]
k=1 jeN;
D,— D" &
Lc—2 ”
< g ; Do (do) G(xic(dor))

=0, Z Aok (do) G(xi(dat)),

k=1
where o, = ch—Ll);l Thus,
S0 ilde) GV (xi(do) = — oy > ok (dor) Gxi(dor)).
k=1 jeN, k=1

Using Lemma 3.1 and (3.6)

n

D> Awldn)GY (i (der)) =0

k=1 jeN,

and
Z i()k dO( Xk dO())

By Lemma 3.3 as well as (3.12)—(3.14) one can get
-2

[60ds= 33 (a6 ()

k=1 j=0

n mp—2

291

(3.12)

(3.13)

(3.14)

= Z Z Ao (do) GV (xx (dex)) +Z 2ok (d2) G(xi (dor))

_Z Z}kdaG<’)xAda +Z Zi/kdﬁf

k=1 jeN; =1 jeN,

+ oy Z Aok (do) G(xp(do)) + (1 — o) Z Jok (dor) G

(1 —ap) Z Aok (dot) G(xp (dor)).

xk(doc))

G(xx(do))

(3.15)
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Then from (3.9) and (3.15), we have

lim sup Z Aok (dor) (xk(dot))S/RG(x) do(x). (3.16)

n— oo

Let ¢>0 be arbitrary; we choose a T such that for |x|>T7 the inequality
If(x)]<eG(x) holds and let a(x) be continuous at the points + 7. Hence for j>1
and feS(do) , by means of Lemma 3.2, we see that

Y Akldo)f (xe(dw)|< Y dfdo(de)lf (xi(dw)))

‘xk|<T |xk\§T
S @l [ G do)
|Xk\<T X1
<D/ S I (weldo))|(a(xe 1) — 2(xc1))
‘X/(‘ST

> 1 Geeldo) | (eu(xe—r) — ex(xc))

x| <T

|xe|<T

+ Y |f(lda)) (xk)—oc(xk+1))]. (3.17)

Because f € S(da) , according to [2, Chapter 3, Theorem 21], we get |f|e S(do). Thus
we obtain

n— oo

lim [Z |f Cor(don)) (ex(v1) — o(oxic)) + D lf(xk(df%))l(fl(xk)—a(Xk+1))]

[xe|<T |xk|<T
=2 I (x)] deu(x)
x|<T
<2/y )| dar(x (3.18)

Then by (3.9), (3.17) and (3.18)

lim =0.

00 Y Alda) f(xi(dw))

,
[xe|<T
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Using Lemma 3.2, (3.16) and noticing that |[f(x)|<eG(x) for |x|> T, we have

limsup| > Au(de) f(xi(do)|< limsup > d Jox(der)eG(xi (dox))
n—0 \xk|>T n—0 |Xk‘>T
< ¢ lim sup Z D 2ok (der) G(xy (dx))
L k=l
[hn} D’} lim sup Z Jok (dot) G (xy (dar))
n— o0 k=1
<e¢ lim DJ/G(x) do(x).
n— o0 R
Hence
lim | Y Zu(da) f(xe(de)| =
|l >T

However

i (don) [ (xic(der) | <| D7 Aldo) f(xi(do) |+ | Y Aw(dof (xu(do))|.

lvel<T [xe|>T
Thus
nlilrgo i: Ai(do) f(xp(do)) =0, j=1, feS(du). (3.19)
=1
Then by means of (3.19) and Definition 1.2
lim Z A (dor) f(xp(dor)) = j=1, feSo(da). (3.20)
=1

n— oo

From Definition 1.2, if f is a polynomial, it is easy to see that
fPeSo(da), j=0,1,2,... . (3.21)

n [5, Theorem 2.1], we have the generalized Gaussian quadrature formula

n m—=2

[ @y dax) =37 Y it 1 (), (3.22)

k=1 j=0

which is exact for every polynomial f € Py, .
It follows from (3.20) and (3.21) that for each polynomial f

n o m—=2

lim Z Z L (do)f D (xp(dat)) = 0. (3.23)
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By virtue of (1.7), (3.22) and (3.23)
11m Ou(da;f) /f X)on(x) do(x /f ) do(x (3.24)

which is exact for every polynomial f.
According to Lemma 3.1, we have

Jor(do) 0. (3.25)

Then by means of Definition 1.3, (3.24) and (3.25), we get the positive quadrature
procedure {Q,(do; f )} belonging to da. According to Theorem B, for daeé,

nlirr;v‘ Ou(do;f) = /Rf(x) da(x), feSo(da). (3.26)

Applying (3.26) to the function, coinciding in [-7,+7] with f(x) but vanishing
outside of [-7',4T] , one obtains

llm Z Jox (do) f(xx (dor)) /f ) do(x). (3.27)

[xe|<T

By reason of (3.25), (3.16) and |f(x)| <&G(x) we obtain

limsup| S Aoe(da) f(xi(d)| < limsup > do(don)|f (xic(da0)|

n ST N2 ST

<e¢lim sup Z Jok (dot) G(x(dar))

<e /R G(x) dor(x) (3.28)
’ / 7(x) dar(x f( ) dou()| < /R G(x) dou(x). (3.29)

Using (3.27)—(3.29) as well as the limiting process ¢ >0, we get
11m Ou(do; f) /f )do(x), feS(da). O
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